40 research outputs found

    Computational simulation of intermingled-fiber hybrid composite behavior

    Get PDF
    Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations

    Microfracture in high temperature metal matrix laminates

    Get PDF
    Computational simulation procedures are described to evaluate the composite microfracture behavior, establish the hierarchy/sequence of fracture modes, and the influence of compliant layers and partial debonding on composite properties and microfracture initiation. These procedures are based upon three-dimensional finite element analysis and composite micromechanics equations. Typical results for the effects of compliant layers and partial debonding, microfracture initiation, and propagation and the thermomechanical cyclic loading on a SiC/Ti15 composite system are presented and discussed. The results show that interfacial debonding follows fiber or matrix fracture, and the thermomechanical cyclic loading severely degrades the composite integrity

    Metal matrix composites microfracture: Computational simulation

    Get PDF
    Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system

    Ceramic matrix composites properties/microstresses with complete and partial interphase bond

    Get PDF
    A multilevel substructuring technique which includes a unique fiber substructuring concept is used for the analysis of continuous fiber reinforced ceramic matrix composites. This technique has four levels of substructuring--from laminate to ply, to supply, and then to fiber. A stand-alone computer code CEMCAN (Ceramic Matrix Composites Analyzer), incorporating this technique and specifically for the simulation of ceramic matrix composites behavior, is currently under development at NASA Lewis Research Center in Cleveland, Ohio. The thermal and mechanical properties, along with the microstresses, for a SiC/RBSN (silicon carbide fiber and reaction bonded silicon nitride matrix) composite at different fiber volume ratios and varying degrees of interfacial bond around the fiber circumference are computed. Values predicted by CEMCAN computer code are shown to bound the experimentally measured values. Results also show that transverse tensile strength test can be a sensitive test method to assess interfacial conditions

    Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite

    Get PDF
    The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features

    Investigation of Effects of Material Architecture on the Elastic Response of a Woven Ceramic Matrix Composite

    Get PDF
    To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount

    Micromechanics for particulate reinforced composites

    Get PDF
    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values

    Life Prediction for a CMC Component Using the NASALIFE Computer Code

    Get PDF
    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC

    A Compilation of MATLAB Scripts and Functions for MACGMC Analyses

    Get PDF
    The primary aim of the current effort is to provide scripts that automate many of the repetitive pre- and post-processing tasks associated with composite materials analyses using the Micromechanics Analysis Code with the Generalized Method of Cells. This document consists of a compilation of hundreds of scripts that were developed in MATLAB (The Mathworks, Inc., Natick, MA) programming language and consolidated into 16 MATLAB functions. (MACGMC). MACGMC is a composite material and laminate analysis software code developed at NASA Glenn Research Center. The software package has been built around the generalized method of cells (GMC) family of micromechanics theories. The computer code is developed with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated to increase the user friendliness, as well as to make it more robust in terms of input preparation and code execution. Finally, classical lamination theory has been implemented within the software, wherein GMC is used to model the composite material response of each ply. Thus, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. The pre-processing tasks include generation of a multitude of different repeating unit cells (RUCs) for CMCs and PMCs, visualization of RUCs from MACGMC input and output files and generation of the RUC section of a MACGMC input file. The post-processing tasks include visualization of the predicted composite response, such as local stress and strain contours, damage initiation and progression, stress-strain behavior, and fatigue response. In addition to the above, several miscellaneous scripts have been developed that can be used to perform repeated Monte-Carlo simulations to enable probabilistic simulations with minimal manual intervention. This document is formatted to provide MATLAB source files and descriptions of how to utilize them. It is assumed that the user has a basic understanding of how MATLAB scripts work and some MATLAB programming experience

    Scatter in Carbon/Silicon Carbide (C/SiC) Composites Quantified

    Get PDF
    Carbon-fiber-reinforced silicon carbide matrix (C/SiC) composites processed by chemical vapor infiltration are candidate materials for aerospace thermal structures. Carbon fibers can retain properties at very high temperatures, but they are known to have poor oxidation resistance in adverse, high-temperature environments. Nevertheless, the combination of CVI-SiC matrix with higher stiffness and oxidation resistance, the interfacial coating, and additional surface-seal coating provides the necessary protection to the carbon fibers, and makes the material viable for high-temperature space applications operating under harsh environments. Furthermore, C/SiC composites, like other ceramic matrix composites (CMCs), exhibit graceful non-catastrophic failure because of various inherent energy dissipating mechanisms. The material exhibits nonlinearity in deformation even at very low stress levels. This is the result of the severe matrix microcracking present in the as processed composite because of large differences between the coefficients of thermal expansion of the fiber and the matrix. Utilization of these advanced composites in next generation space vehicles will require innovative structural configurations, updated materials, and refined analyses. Structural safety issues for these vehicles are in direct competition with performance and cost. One would have to quantify the uncertainties associated with the design using formal probabilistic methods. Specifically four fundamental aspects on which analyses are based-- (1) loading conditions, (2) material behavior, (3) geometrical configurations, and (4) structural connections between the composite components and baseline structure--are stochastic in nature. A direct way to formally account for uncertainties is to develop probabilistic structural analysis methods where all participating variables are described by appropriate probability density functions. The present work, however, focuses on analyzing the stochastic material behavior of these advanced composites using formal probabilistic analysis methods. Often, some of the desirable property characteristics that allow composites to offer advantages over conventional structural materials (like tailoring of composite properties) and the complexity are in fact responsible for their greater statistical variability and the requirements for more characterization tests. Composite properties are anisotropic as well, having different properties in different directions. This means that characterization of a property such as stiffness--which will vary greatly depending on the orientation of the fiber relative to the direction of the testing--must be repeated for several different directions and loading conditions. The fabrication process for composites also introduces statistical variations in properties and geometry. A composite part is produced in a number of steps, each of which introduces statistical variability. The matrix is usually produced from a combination of raw materials; and the fiber, which has its own set of properties, is often coated or surface treated, introducing yet another source of variability
    corecore